Estradiol enhances prostaglandin E2 receptor gene expression in luteinizing hormone-releasing hormone (LHRH) neurons and facilitates the LHRH response to PGE2 by activating a glia-to-neuron signaling pathway.
نویسندگان
چکیده
Prostaglandin E2 (PGE2) mediates the stimulatory effect of norepinephrine (NE) on the secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling reproductive function. In rodents, this facilitatory effect requires previous exposure to estradiol, suggesting that the steroid affects downstream components in the cascade that leads to PGE2-induced LHRH release. Because astroglia are the predominant cell type contacting LHRH-secreting nerve terminals, we investigated the involvement of hypothalamic astrocytes in the estradiol facilitation of PGE2-induced LHRH release. A subpopulation of LHRH neurons was found to express the mRNA encoding the PGE2 receptor subtype EP1-R, which is coupled to calcium mobilization. The LHRH-producing cell line GT1-1 also contains EP1-R mRNA and, to a lesser extent, the three alternatively spliced forms of EP3-R mRNA (alpha, beta, and gamma) that encode receptors linked to inhibition and stimulation of cAMP formation. Hypothalamic astrocytes treated with estradiol produced a conditioned medium that when applied to GT1-1 cells resulted in a selective upregulation of EP1-R and EP3gamma-R mRNAs. The conditioned medium also enhanced the LHRH response to EP1-R and EP3-R agonists and the cAMP response to EP3-R activation. Thus, one mechanism by which estradiol facilitates the effect of neurotransmitters acting via PGE2 to stimulate LHRH release is by enhancing the glial production of substances that upregulate PGE2 receptors on LHRH neurons. The existence of such a mechanism underscores the emerging importance of glial-neuronal communication in the control of brain neurosecretory activity.
منابع مشابه
beta-Endorphin blocks luteinizing hormone-releasing hormone release by inhibiting the nitricoxidergic pathway controlling its release.
beta-Endorphin blocks release of luteinizing hormone (LH)-releasing hormone (LHRH) into the hypophyseal portal vessels by stimulating mu-opiate receptors, thereby inhibiting secretion of LH. LHRH release is controlled by release of nitric oxide from nitricoxidergic (NOergic) neurons in the basal tuberal hypothalamus. To determine whether beta-endorphin exerts its inhibitory action on this NOerg...
متن کاملExpression of prostacyclin receptors in luteinizing hormone-releasing hormone immortalized neurons: role in the control of hormone secretion.
PGs of the E series are involved in the control of LHRH secretion. The present experiments were conducted to clarify whether PGI2 (prostacyclin) might be also involved in such a control, using multiple methodological approaches on immortalized LHRH-secreting neurons. A RT-PCR procedure to detect mouse PGI2 receptor (IP) messenger RNA was first applied, and the results obtained showed the presen...
متن کاملIn vitro effect of delta 9-tetrahydrocannabinol to stimulate somatostatin release and block that of luteinizing hormone-releasing hormone by suppression of the release of prostaglandin E2.
Previous in vivo studies have shown that delta 9-tetrahydrocannabinol (THC), the principal active ingredient in marijuana, can suppress both luteinizing hormone (LH) and growth hormone (GH) secretion after its injection into the third ventricle of conscious male rats. The present studies were designed to determine the mechanism of these effects. Various doses of THC were incubated with either s...
متن کاملNormal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes.
The initiation of mammalian puberty requires the activation of hypothalamic neurons secreting the neuropeptide luteinizing hormone-releasing hormone (LHRH). It is thought that this activation is caused by changes in trans-synaptic input to LHRH neurons. More recently, it has been postulated that the pubertal increase in LHRH secretion in female animals also requires neuron-glia signaling mediat...
متن کاملHypothalamic Glial-to-Neuronal Signaling during Puberty: Influence of Alcohol
Mammalian puberty requires complex interactions between glial and neuronal regulatory systems within the hypothalamus that results in the timely increase in the secretion of luteinizing hormone releasing hormone (LHRH). Assessing the molecules required for the development of coordinated communication networks between glia and LHRH neuron terminals in the basal hypothalamus, as well as identifyi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 23 شماره
صفحات -
تاریخ انتشار 1997